RTC TAIWAN ATYCO FLUID CONTROL

RTC Lead the smart flow

Ceramic Lined Ball Valve

Erosion-Corrosion-Cavitation Resistant Manual and Automated Series 713FCA

TAIWAN ATYCO FLUID CONTROL EQUIPMENT INTERNATIONAL COMPANY LIMITED

Liaoning Yuanlu Machinery Equipment Manufacturing Co., Ltd.

Address:55 Gongnong Road, Zhanqian District,

Yingkou City, Liaoning Province, China

TEL:+008613332319780

FAX:+00860417-3535904

Website:www.atyco.cn

Email:atycoln@163.com

Ceramic Lined Ball Valve

RTC's advanced ball valve is fully lined with Zirconia Ceramic, exploiting its high chemical stability and hardness (HRA86-90) only inferior to diamond. The valve is designed for high standard of performance that provides the ideal solution for the most critical and difficult services of high corrosion, high erosion, high wear and high temperature. Especially the fluid contains high hardness particle or strong corrosion and wear medium. It is mainly used to cut off or regulate the fluid medium in these harsh conditions.

■ Ceramic Advantage

Zirconia is produced by calcining zirconium, taking advantage of its high thermal stability. It also has better tenacity than ordinary ceramic materials.

Zirconia is commonly blended with some other stabilizing oxide to balance toughness and strength. Effective stabilizer include Magnesium Oxide (MgO), Yttrium Oxide (Y2O3), Calcium Oxide (CaO) and Cerium Oxide (Ce2O3).

With years of experiences in manufacturing, we provide Zirconia by adding Yttria which is ideal for the most corrosive and abrasive services under an operating temperature of 400°C.

■ Yttria Tetragonal Zirconia Polycrystal (Y-TZP) Ceramic Material

Yttaria stabilized zirconia is partially stabilized with 5.4% Yttria (Y2O3). It is also known as TZP, Tetragonal Zirconia Polycrystal, and it has the finest grain size of all the zirconia materials. Y-TZP is well suited to replacing metals due to its extremely high strength and toughness, it also provides far higher resistance to chemicals and superior erosion resistance.

■Prime Features

□Very	high	mec	hani	ical	l strength
□High	hard	ness			

☐ High impact resistance

☐ Very high wear resistance ☐ Very high erosion resistance

☐ High chemical resistance (acids/alkalis)

☐ High corrosion resistance

□Very low thermal conductivity

□Non-magnetic

☐ Modulus of elasticity similar to steel

 \Box Coefficient of thermal expansion similar to iron

Composition Chart Y-TZP ZrO2 Ceramic

Crystal	>85% cubic and tetragonal
Lg. loss	0.8%~1.0%
Average	0.4μm~0.7μm
Apparent Density	>0.4 g/cc
Tapped Density	>0.8 g/cc
ZrO2 Purity	>99.95%
Y2O3 Yttrium Oxide	5.4% ±0.1
Color	Light Gray

Lead the smart flow

Standard Specifications

Valve Design: ASME B16.34 Face to Face: ASME B16.10

Flange Adaptability: ANSI Class 150 JIS 10K, PN10/16

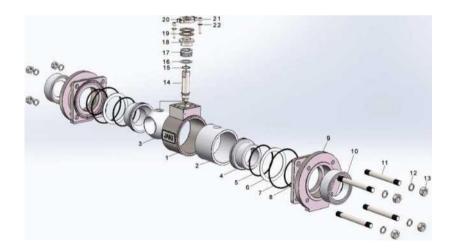
Inspection & Testing: API 598, EN12266-1

Product Range

Body Configurations: 3pc split body Valve Size: 1/2" ~ 8" (DN15 ~ 200) Rating: Class 150

Max. Temperature:

Standard type 220°C (428T) High Temp, type 388°C (732°F) Leakage


Class: Class V/VI shut-off

Operator Available

Lever Handle, Gear Operator, Pneumatic and Electric Actuators

Other Options of Ceramic available:

PSZ (Partially Stabilized Zirconia) Alumina AI2O3 Silicon Nitride Si3N4 Silicon carbide SiC

www.atyco.cn 2

Material Specifications

Material

Y-TZP Zirconia Ceramic

WCB.CF8.CF8M

Zirconia Ceramic

Zirconia Ceramic FKM

Stainless Steel

WCB,CF8,CF8M

Stainless Steel

Stainless Steel

Stainless Steel

Stainless Steel

SS304, SS316

Stainless Steel

SS304, SS316

Stainless Steel

Stainless Steel

PTFE Chevron, Graphite

FKM

Y-TZP Zirconia Ceramic

AISI 316 (Hastelloy, Zirconia Ceramic)

FKM

FKM

Description

Body Bushing

Body

Seat

O-ring

O-ring

O-ring

Washer

Hex. Nut

O-ring

Washer

Gland

Washer

Hex. Bolt

Stem Packing

Packing Gland

Spring Washer

Disc Spring

End Flange

Cap Bushing

6

10

11 Stud

12

13

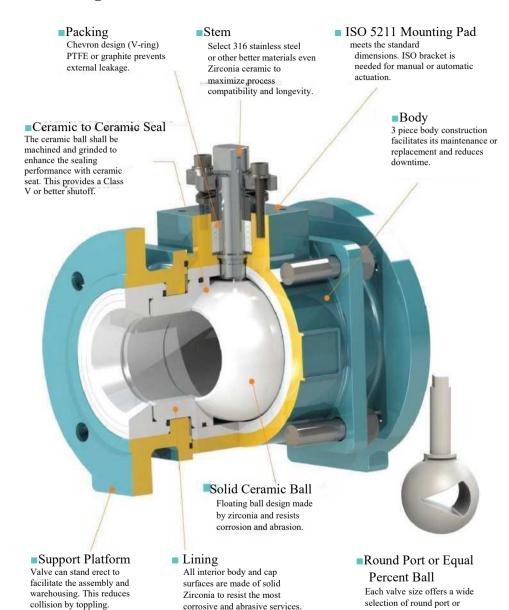
14 Stem

15

16

17

18


20

21

Ceramic Lined Ball Valve

Valve Design Features

www.atyco.cn

Ceramic Material Performance

Ceramic Material I criorii	ance					
Technical Data & Property Values		Zirc	onia	Alumina	Silicon Nitride	Silicon Carbide
Technical Data & Floperty Values		Y-ZrO2	Mg-ZrO2	99% AI2O3	Si3N4	SiC
		Physical	l Properties			
Water Absorption	%	0	0	0	0	0.5
Density	g/cm ³	6.0-6.05	5.72-5.74	3.9-3.95	3.2-3.33	3.15-3.25
	1	Mechanic	al Properties		I	
Flexural Strength	MPa	1150	900	450	1200	470
Compressive Strength	MPa	2000	1800	2200	2800	_
Hardness	HRA	87	85	92	92	94
Fracture Toughness Kic	MPam	10-12	13-15	4.5	7	4
Modulus of Elasticity	GPa	200	200	350	300	400
		Therma	l Properties			
Use Temperature (max.)	°C	500	1000	1500	1500	1500
Thermal Expansion Coefficient	/°C	9.6X10-6	10x10-6	8.3x10-6	3.4x10-6	4x10-6
Thermal Shock Resistance	°C	87	110	50	200	75
Thermal Conductivity	W/mK	2	2	28	25	100
		Electri	cal Properties	ı	1	1
Resistivity 20° C	©.cm	>1010	>1010	>1012	>1011	106-108
100° C	©.cm			1012-1013	>1011	
300° C	©.cm			>1012	>1011	

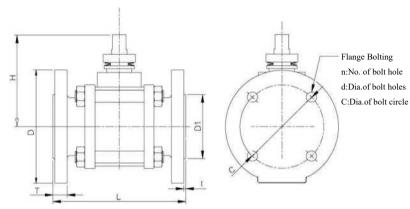
Corrosion Resistance

Media	Lining Materials										
Wicaia	Temperature	ZrO2	99% AI2O3	Si3N4	SiC	PTFE/PFA	Fluororubber				
20%HCI	60 °C	A	A	В	A	A	A				
20%HCI	95 °C	A	A	С	A	A	A				
90%H2SO4	60 °C	A	A	A	A	A	A				
90%H2SO4	95 °C	A	A	В	A	A	A				
60%H3PO4	60 °C	A	A	С	A	A	A				
60%H3PO4	95 °C	A	A	С	A	A	A				
10%HF	60 °C	С	В	A	A	A	A				
46%HF	95 °C	С	С	С	A	A	A				
60%HNO3	60 °C	A	A	С	A	A	A				
60%HNO3	95 °C	A	В	С	A	A	A				
30%NaOH	60 °C	A	В	В	A	A	A				
30%NaOH	95 °C	A	В	С	A	A	A				

A=<0.1 mmg/cm²/day Recommended

B=0.1 -0.3mmg/cm²/day Conditional, consult factory

C=>0.3mmg/cm²/day Not Recommended


The data in the above chart was obtained under controlled test conditions, and actual valve characteristics and performance may increase or decrease depending upon actual installation conditions.

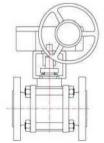
www.atyco.cn

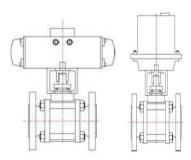
characterized V-port for special

control requirements.

Fig. 713FCA Ceramic Lined Ball Valve

Dimensions


Flanged End I Class 150/2 way


0			•						
SIZE	L	D	D1	C	T	t	n	d	Η
1/2 "	108	89	35	60.5	11	1.6	4	16	238
3/4 "	117	98	43	70.0	11	1.6	4	16	248
1 "	127	108	51	79.5	13	1.6	4	16	253
1-1/4 "	140	117	64	89.0	14	1.6	4	16	268
1-1/2 "	165	127	73	98.5	14	1.6	4	16	276
2 "	178	152	92	120.5	16	1.6	4	19	294
2-1/2 "	190	178	105	139.5	18	1.6	4	19	313
3 "	203	190	127	152.5	19	1.6	4	19	371
4 "	229	229	157	190.5	24	1.6	8	19	396
5 "	254	254	186	216.0	24	1.6	8	22	451
6 "	267	279	216	241.5	25	1.6	8	22	476
8 "	292	343	270	298.5	29	1.6	8	22	494

Dimensions are in mm. Weight in kg

Valve Flow Data

TALLE CIZE

The table below provides flow coefficients for series 713FCA ceramic lined ball valve. The Cv values represent the flow of water through a round port or equal percent port. Cv: the volume flow in US gallons per minute [gpm] at a temperature of 60°F with a pressure drop of 1 psi. Kv: the volume flow in cubic meters per hour [m³/h] at a temperature of 16°C with a pressure drop of 1 bar (kg/cm²).

 $Cv = 1,156 \cdot Kv$ $Kv = 0.865 \cdot Cv$

VALV	E SIZE	Cv v	alue		
INCH	DN	O PORT	V60°	V45°	V30°
1/2	15	10.2	7	4	3
3/4	20	10.2	7	4	3
1	25	18.2	12	8	5
1-1/4	32	28.6	18	12	8
1-1/2	40	47	30	20	13
2	50	73	46	31	21
2-1/2	65	114	72	48	32
3	80	181	115	76	51
4	100	292	185	123	82
5	125	456	289	192	128
6	150	712	452	300	201
8	200	1025	650	432	289

Valve Torque Data

(All torques in N-m.)

VALVE SIZE	INCH	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	5	6	8
VALVE SIZE	DN	15	20	25	32	40	50	65	80	100	125	150	200
	6 bar	12	12	24	30	40	50	60	80	150	260	260	490
	10 bar	18	18	30	42	50	60	85	125	165	260	260	520
WORKING PRESSURE	16 bar	20	20	30	60	80	90	100	140	180	280	280	650

Industries & Applications

□Power and Cogeneration □Slurries

□Waste Treatment Process □Mud and Sand dispersal

□ Iron and Steel Plants
□ Mining
□ Pulp and Paper
□ Chemical Processing
□ Refini g
□ Desulfurization

More information about application for a given service, please consult manufacturer.